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1. Overview of the %FactorialPowerPlan Macro 

Factorial experiments and fractional factorial experiments can have many advantages in 

the social and behavioral sciences (see Collins, Dziak, & Li, 2009). However, as with all 

experiments, they require planning, especially for choosing an adequate number of 

participants (also known as sample size or N). Researchers try to find an N that is large enough 

to offer a high probability of a useful result while not being so large as to waste money or 

other resources. The %FactorialPowerPlan macro is intended to help with this process.  

This users’ guide describes how to use the %FactorialPowerPlan macro. The macro can 

be used to do sample size and power calculations for planning either a factorial or fractional 

factorial experiment. The calculations can be done for either posttest-only or pretest-posttest 

designs. Participants can either be assumed to be independent, or nested within existing 

clusters as discussed in Dziak, Nahum-Shani, and Collins (2012). The factors (independent 

variables) are assumed to be dichotomous (each has only two levels) and the outcome 

variable is assumed to be normally distributed.  

 This guide assumes you have some knowledge of factorial and fractional factorial 

experiments. Collins et al. (2009) provides an introduction to factorial experiments for 

audiences in the social, behavioral, prevention, and intervention sciences. Dziak et al. (2012) 

provides further information on the implications of nesting within clusters for factorial 

experiments.  

1.1 %FactorialPowerPlan Macro Features 

The macro can calculate the effect of the following special conditions on power: 

• clustered samples, with treatment assignment at either the individual or the cluster 

level; 

• an individual-level pretest, or no pretest; and 

• different alpha levels from 0 to .5 (e.g., .01, .05). 

The experiment may be either a complete factorial or fractional factorial design. Power 

for main effects or for interactions can be calculated. However, as is always the case in sample 

size and power planning, the accuracy of the macro's predictions is of course dependent on a 

model and on the values of various user-provided parameters that represent the user's 

assumptions. The parameters required are described later in this manual. 
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1.2 %FactorialPowerPlan Macro Requirements 

The macro requires SAS version 9.1 or higher for Windows. It requires SAS/STAT and 

SAS/IML procedures in order to perform the calculations, but most university licenses include 

these, and most users will have them automatically as part of their SAS installation. Therefore, 

the only thing that most users will need to do is to download the macro and then direct SAS to 

read it using an INCLUDE statement, as described in section 5.1 of this manual. 
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2. Factorial Experiments and Effect Coding  

The macro assumes that there are K dichotomous factors. (The current version of the 

macro does not accommodate factors with more than two levels.) Thus, using effect coding, we 

can express the levels of any given factor as +1 and -1 (see Myers & Well, 2003). For example, 

+1 might indicate “on” and -1 might indicate “off,” or +1 might indicate “high” and -1 might 

indicate “low.” These numbers are just arbitrary labels to show that they are opposite sides of 

a contrast defined by the factor of interest. The positive and negative signs do not represent 

any expectation that one level is “good” or that the other is “bad.”  

Given this coding, we can represent any of the 2� treatment conditions or “cells” as a 

list of K numbers. For example, if there are three factors, and subject i is assigned to the high 

level of the first and the low level of the other two, then subject i is in the cell (+1,-1,-1). Thus �1i = +1, ��� = −1, �
� = −1. We can also treat each factor as a regression variable and 

represent their interactions as products. This gives us a way to represent any subject’s 

expected value (i.e., the estimated population mean of the cell this subject is in) in terms of the 

factors. For example, if there are three factors then the expected value �� of the response �� 
from respondent  is 

 �� = ����� = �� + ����� + ����� + �
�
���,������� + ��,
����
�+��,
����
� + ��,�,
�������
�  
 

 (1) 

 It is possible to simplify the model by assuming that interactions above a certain 

amount of complexity (e.g., three-way interactions) are negligible.  

2.1 Effect Size Measures for Main Effects 

The main effect of any factor � (1 ≤ � ≤ �) can be defined as the difference between the 

average1 responses for the two levels of the factor; that is, ��� = �������� − �������� (see Myers 

& Well, 2003). Because of effect coding, the other terms in (1) cancel out when we take the 

difference and we get  

                                                           
1 We assume in this macro that the number of subjects in each cell is equal, so we do not have to worry about whether �������� is the average of all subjects with �� = +1 or the average of all cells with �� = +1. If cell sizes were unequal, however, it is 

more sensible to define the main effect as the average of all cells (i.e., the weighted average of all subjects). In that case, all of our effect 

size formulas still make sense (i.e., expression (1) still implies expression (2).). NOTE: power may be lower due to imbalance. 
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 ��� = �������� − ��������= +1�� − �−1���= 2��  

 

 (2)  

 

 

If we assume each subject has response standard deviation � , then we could also 

calculate the standardized effect size ���!"# = ���/� = 2��/� , which would be similar to d 

as used by Cohen (1988) for t-tests. We could also calculate a standardized regression 

coefficient ��!"# = ��/� = %/2. Last, for a balanced design, it can be shown algebraically that 

Cohen's signal–to-noise ratio &� (also known as '�), the ratio of the variance accounted for by 

the effect of interest to the error variance, is equal to ��� � �(  and to )��!"#*�. Any of these 

quantities could be considered a measure of the effect size of factor k. However, it is only 

necessary to specify one of them.  

2.2 Effect Size Measures for Two-Way Interactions 

The interaction between factor + and factor , is sometimes defined as a difference 

between differences, as follows:  

- × /0,1 = )���2���,�3���� − ���2���,�3����* − )���2���,�3���� − ���2���,�3����*= 4�0,1 − )−�0,1*5 − 4)−�0,1* − �0,15 = 4�0,1 .  

However, other sources define it as half the difference of differences: 

- × /0,1∗ = 12 4)���2���,�3���� − ���2���,�3����* − )���2���,�3���� − ���2���,�3����*5
= 12 4�0,1 − )−�0,1*5 − 4)−�0,1* − �0,15 = 2�0,1.  

To prevent confusion that could be caused by this inconsistency in the literature, the 

interaction must be specified as a regression coefficient. It could either be the unstandardized 

regression coefficient 

�0,1 = �9 4)���2���,�3���� − ���2���,�3����* − )���2���,�3���� − ���2���,�3����*5, 

the standardized regression coefficient 

   �0,1!"# = �0,1/� ,  

or the signal-to-noise ratio, which is the square of the standardized regression coefficient.  
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It is also possible to specify regression coefficients for higher-order interactions. For 

example, the coefficient for the interaction �0,1,: is  

18< 4)���2���,�3���,�=���� − ���2���,�3���,�=����* − )���2���,�3���,�=���� − ���2���,�3���,�=����*5− 4)���2���,�3���,�=���� − ���2���,�3���,�=����* − )���2���,�3���,�=���� − ���2���,�3���,�=����*5>. 
 

When providing a regression coefficient, you do not have to specify whether it 

represents a main effect or an interaction, nor specify the kind of interaction—this does not 

matter for power in a balanced design being analyzed with effect coding; all that matters is the 

size of the regression coefficient. 
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3. Macro Assumptions 

 The field of factorial experiments is very broad. Therefore, some assumptions about the 

kind of experiment being considered were necessary in implementing %FactorialPowerPlan. 

3.1 Randomized Factorial Experiment With Dichotomous Factors  

The %FactorialPowerPlan macro assumes a randomized factorial experiment with K 

factors, K≥1 and K<99. For most users, K will probably be between 2 and 8. Each factor is 

assumed to be dichotomous (having only two levels). Thus, the total number of possible 

“cells” (experimental conditions defined by the factors) is 2×2×...×2, or 2K.  

It is assumed that the K factors are conceptually independent, so that each of these 2K 

cells is possible to implement, at least in theory. For example, an experiment in which one of 

the “factors” is medication versus no medication, and the other “factor” is low dose versus 

high dose, is not allowed. This would not really be a factorial experiment, because it is 

impossible to interpret a difference between a low dose of nothing and a high dose of nothing. 

Rather than a factorial experiment, this situation would be more logically viewed as an 

experiment involving a single three-level factor with levels none, low, and high (see Collins et 

al., 2009).   The %FactorialPowerPlan macro does not apply to this kind of experiment. 

3.2 Balanced Assignment 

Assignment of participants to experimental conditions is assumed to be balanced. That 

is, the same (or essentially the same) number of participants is assumed to be assigned to each 

cell. If this does not hold then the experiment may be somewhat less efficient than expected 

and power will be somewhat lower. 

3.3 Effects Assumed to be Negligible in Fractional Factorial Experiments are 

Actually Negligible 

The experiment may be either complete factorial or fractional factorial. Which of these 

it is, however, does not have to be specified when using the macro. This is because a fractional 

factorial has exactly the same theoretical power as the corresponding complete factorial for the 

tests of the effects it includes, as long as all of the interactions which are assumed to be 

negligible in order to design the fractional factorial are in fact negligible (see Collins et al., 

2009). If a fractional factorial experiment is done but the assumptions behind it are not satisfied 

(i.e., an effect of interest is aliased with a non-negligible interaction), power may be either 
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lower or spuriously higher, and Type I error may also be higher than expected. However, 

aliasing is not considered by the %FactorialPowerPlan macro, because it would be very 

difficult to predict the exact effect on power that a violation of assumptions would have, since 

so many different effects are possible.  

3.4 Response Variable is Normally Distributed 

It is also assumed that the response variable is normally distributed, with the same 

error variance in all cells, and no “floor” or “ceiling” effects caused by a restricted range of 

possible outcomes. These technical assumptions are required for the calculations, but they are 

unlikely to hold exactly in practice. The extent to which they may be violated without causing 

important changes in power is a complicated question that deserves further research. 

3.5 Power Assumptions 

Last, because “power” can mean different things in different contexts, it is useful to 

clarify what our macro calculates. 

1. The macro calculations assume that the user is not trying to reduce experimentwise 

Type I error rate among the main effects and interactions being tested by using a 

Bonferroni or other multiple comparison correction. We currently do not 

recommend that such a correction be done for planned tests of main effects or 

interactions in a factorial design.  

2. Likewise, the macro estimates the probability of finding a given factor significant 

given that its true effects are nonzero, not the probability of finding each of them 

significant given that their true effects are all nonzero. That is, power is defined in 

this context as one minus Type II error rate for a single factor, not the 

experimentwise Type II error rate. Unlike experimentwise Type I error, 

experimentwise Type II error has received little attention in the literature. 

3. Power is not being predicted for an omnibus or overall test (all effects zero versus at 

least one nonzero), but instead for each test of a single effect (this effect zero versus 

this effect nonzero).   

4. Finally, power is not being calculated for pairwise contrasts; that is, comparisons of 

individual cells with other individual cells with or without a multiple comparison 

correction. It has been argued (e.g., McAlister, Straus, Sackett, & Altman, 2003) that 

inference about comparing individual cell means is important. This is often true, 

especially in a confirmatory experiment with only two or three factors. However, 
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powering contrasts among all 2k cells becomes infeasible in the context of an 

experiment with more than two or three factors, as in a factor-screening experiment 

(see Collins et al., 2009). In other words, it is not helpful to think of a 25 factorial as 

simply a giant randomized controlled trial with 32 arms (Dziak et al., 2012); it is 

much more feasible in that case to focus on main effects and some of the simpler 

interactions. 
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4. Optional Design Features 

 The %FactorialPowerPlan macro can also take into account the effects of clustered 

assignment and/or the presence of a pretest. Each is described below. 

4.1 Clustering 

As described by Dziak et al. (2012), sometimes subjects are not independent because they 

are nested within natural clusters (e.g., schools, clinics). Power is different depending on 

whether treatment is assigned at the individual level (“within-clusters” assignment) or the 

cluster level (“between-clusters” assignment). In the case of within-clusters assignment, 

participants are individually randomly assigned, and therefore not everyone in a cluster will 

have the same treatment. For example, different patients at the same clinic can independently 

receive different pills.  In the case of between-clusters assignment, the random assignment is 

done for the cluster as a whole, and as a result everyone within a given cluster will receive the 

same treatment as everyone else in that cluster. For example, all students within a given 

classroom must receive the same educational curriculum. The %FactorialPowerPlan macro 

calculates power for either kind of clustered experiment, using the Dziak et al. approach.   

In theory, other designs are possible that would combine features of between- and 

within-clusters assignment. For example, suppose that certain treatment conditions are 

unavailable in a given cluster, but that within this constraint individuals are otherwise 

assigned randomly. Our macro currently does not compute power for more complicated 

situations like this one. Instead, in the within-cluster case, all conditions are assumed to be 

potentially available to all participants. 

%FactorialPowerPlan assumes that there are no interactions between cluster effects and 

treatment; that is, that factor effects are the same for each cluster, even though there may be 

random cluster effects. This assumption may be too simplistic (see Raudenbush & Liu, 2000), 

but further research is needed about how to relax it when there are multiple factors.  

4.2 Pretest  

 A pretest can often improve the power of an experiment. A pretest may be used in 

different ways, reflecting different assumptions and potentially having different effects on 

power. Specifically, there are different power formulas depending on whether the pretest is 

adjusted for as a regression covariate as in analysis of covariance (ANCOVA) or entered into a 

multilevel model as a repeated measurement (see Allison, 1990; Murray, 1998).   
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In covariate-adjusted analysis or ANCOVA, the main effects and interactions of interest 

are no longer defined in terms of differences between cells in the mean raw responses, but in 

the mean adjusted responses. In the repeated measures analysis, the main effects and 

interactions of interest are defined in terms of differences between conditions in the mean 

change scores (posttest minus pretest; see Murray 1998, p. 181, who called this approach the 

“time×condition” analysis). In many situations with large samples and random assignment, 

the two methods can give almost identical performance (as in the simulations in Dziak et al., 

2012). However, they reflect subtly different assumptions (see Allison, 1990) and can have very 

different performance in some situations (see Janega et al., 2004; Murray, 1998; Murray & 

Blitstein, 2003). When assignment is not random, ANCOVA and repeated measures 

approaches can give substantively very different answers, and they have different potential 

biases. However, for this macro we assume random assignment, and so the main concern is 

not bias but power. According to existing power formulas, the repeated measures approach is 

better than having no pretest at all only when the pretest-posttest correlation is greater than 

0.5, and is worse than no pretest if the pretest-posttest correlation is less than 0.5. Also, 

according to power formulas, ANCOVA is not much less powerful and may be much more 

powerful than having no pretest or using repeated measures. Thus, one could argue that 

ANCOVA is the best choice. However, an opposing argument is that this power advantage 

may sometimes be an artifact of the ANCOVA power formula not accounting for 

measurement error in the pretest. More information is given in Frison and Pocock (1992), 

Vickers (2001), Oakes and Feldman (2001), and Smolkowski (2010). Because the situation is so 

complicated, %FactorialPowerPlan offers either kind of model for the pretest, so it is the user's 

choice. The exception is that for between-clusters assignment, the pretest-as-covariate option is 

not allowed because power is difficult to predict in this setting (Murray, 1998; Dziak et al., 

2012). Thus, the following combinations of options are available: 

No pretest Pretest as  

covariate 

Pretest as  

repeated measure 

No clustering � � � 

Within-clusters assignment � � � 

Between-clusters assignment � Not provided � 
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5. Preparing to Use the %FactorialPowerPlan Macro 

5.1 Loading and Running the Macro 

A SAS macro is a special block of SAS commands. First the block is defined, and then it 

is called when needed. Two steps need to be completed before running %FactorialPowerPlan. 

First, if you haven’t already done so, download and save the macro to the designated path 

(e.g., S:\myfolder\). Second, direct SAS to read the macro code from the path, using a SAS 

%INCLUDE statement. For example, suppose that the SAS macro file FactorialPowerPlan.sas 

is saved in the folder “S:\myfolder\  “. Then the include statement would be 

%INCLUDE “ S:\myfolder\FactorialPowerPlan.sas ” ; 

You must replace “S:\myfolder\ ” with the location where you downloaded and saved the 

macro. 

 
If this is the location of the macro, the include statement would be 

 %INCLUDE “C:\SAS\FactorialPowerPlan.sas”; 

 

5.2 Specifying Design Information 

There are three ways to use %FactorialPowerPlan.  

1. Estimate power available from a given sample size and a given effect size. 

2. Estimate sample size needed for a given power and a given effect size. 

3. Estimate effect size detectable from a given power at a given sample size. 



15 

 

 

There are three main pieces of information: power, sample size, and effect size. The user 

provides two of them, and the macro calculates the third. 

 If the participants are independent, then “sample size” is the number of participants. 

If the participants are clustered, “Sample size” is measured differently. In this case, the 

average number of participants per cluster is assumed to be given, and then the needed 

number of clusters is calculated. For example, if an investigator is randomly assigning 

classrooms and believes that classrooms have about 20 students on average, he/she may need 

to know how many classrooms are needed. Of course, the total number of participants could 

then be estimated as the product of the number of clusters and the mean number of members 

per cluster (e.g., 30 classrooms x 20 students/ classroom = 600 students).  

 The exact usage of the macro is slightly different depending on which of the three 

pieces of information listed above is being calculated, and on whether or not the participants 

are assumed to be nested within clusters. This defines 3 (power, N, effect size) × 2 (clustered, 

unclustered) = 6 main ways to use the macro. The next section provides a brief overview of the 

macro syntax, and six sub-sections considering each of these possible use scenarios in turn. 
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6. Syntax 

 To run the macro, you should specify information about your model assumptions as 

“arguments” or inputs in a list of key words. Upper or lower case is not important. The order 

of the arguments is also not important, because the arguments are distinguished by their 

names. The possible arguments are listed in the following table. You do not have to use all of 

the arguments. No single argument is always required, although at least some information 

must be provided. Examples for using the code are given in the following section. 
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Argument Value 

alpha Two-sided Type I error level for the test to be performed (default=0.05) 

nfactors The number of factors (independent variables) in the planned experiment (default=1) 

sigma_y The assumed standard deviation σy of the response variable after treatment, within each 

treatment condition (i.e., adjusting for treatment but not adjusting for post-test).  

This statement must be used if the effect size argument used is either “raw_main” or 

“raw_coef” 

model_order The highest order term to be included in the regression model in the planned analysis 

(1=main effects, 2=two-way interactions, 3=three-way interactions, etc.); must be ≥ 1 and 

≤ nfactors. (default=1) 

P
re

te
st

 i
te

m
s 

pretest One of three options:  

• “no” or “none” for no pretest 

• “covariate” for pretest to be entered as a covariate in the model 

• “repeated” for pretest to be considered as a repeated measure 

The option “yes” is also allowed and is interpreted as “repeated.” 

The option “covariate” is not allowed if assignment is between clusters. 

pre_post_corr Relevant only if there is a pretest. The correlation between the pretest and the posttest. 

C
lu

st
e

ri
n

g
 i
te

m
s 

assignment One of three options: (default=unclustered) 

• “independent” or equivalently “unclustered” 

• “within” or equivalently “within_clusters” 

• “between” or equivalently “between_clusters” 

change_score_icc Relevant only if assignment is between clusters and there is a pretest. The intraclass 

correlation of the change scores (posttest minus pretest). 

cluster_size Relevant only if assignment is between clusters or within clusters. The mean number of 

members in each cluster. 

cluster_size_sd Relevant only if assignment is between clusters. The standard deviation of the number of 

members in each cluster. (default=0) 

icc Relevant only if assignment is between clusters or within clusters. The intraclass 

correlation of the variable of interest in the absence of treatment. 

nclusters The total number of clusters available (for between clusters or within clusters assignment). 

Two of the following three items must be specified: sample size, power, and effect size. 

ntotal The total sample size available (for unclustered assignment. For clustered assignment, use 

“cluster_size” and “nclusters.”) 

power If specified: The desired power of the test.  If returned: The expected power of the test. 

Any one of the following may be used to specify the effect size: 

d_main Effect size measure: standardized mean difference ME σB⁄ . 

effect_size_ratio  Effect size measure: signal to noise ratio �� �B�( . 

std_coef Effect size measure: standardized effect-coded regression coefficient �/� . 

raw_coef Effect size measure: unstandardized effect-coded regression coefficient �. 

raw_main Effect size measure: unstandardized mean difference ME. 
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7. Calculating Power Without Clustering 

7.1 Example 

Suppose you want to calculate power for a 5-factor experiment, analyzed using a 2nd 

order model (i.e., main effects and 2-way interactions). Suppose that the smallest main effect 

expected to be of interest for any active factor is 3 units, on a response variable whose error 

standard deviation is expected to be 10. Then use the code 

%INCLUDE “S:\MyFolder\FactorialPowerPlan.sas “; 
%FactorialPowerPlan(assignment=independent, 
          model_order= 2, 
          nfactors= 5, 
          ntotal= 300, 
          raw_main= 3,  
          sigma_y= 10);  

 

• “assignment=independent” indicates that participants are not in clusters (default) 

• “model order” denotes the order of the highest order term to be included in the 

regression 

• “nfactors” denotes the number of factors in the experiment 

• “ntotal” denotes the total sample size (not the sample size per condition) 

• “sigma_y” denotes the standard deviation of y within each treatment condition 

• “raw_main” denotes the unstandardized main effect 

  

The output is  

 
--------------------------------------------------- --------- 
FactorialPowerPlan Macro 
The Methodology Center 
(c) 2012 Pennsylvania State University 
--------------------------------------------------- --------- 
Assumptions: 

There are  5 dichotomous factors. 
There is independent random assignment. 
Analysis will be based on main effects and 2-way in teractions. 
Two-sided alpha:   0.05 
Total number of participants:   300 
Effect size as unstandardized difference in means:   3.00 
Assumed standard deviation for the response variabl e is   10.00 
Attempting to calculate the estimated power. 
--------------------------------------------------- --------- 
Results: 
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The calculated power is:  0.7354 
--------------------------------------------------- --------- 

 

 Experimenting with different values of “nfactors”  and “model_order”  will show 

that they have almost no effect on power in this situation, and this is to be expected, because 

for any reasonable model size there are many fewer than 300 parameters and so the loss of 

degrees of freedom due to extra model parameters is of little or no importance (see Collins, 

Dziak, & Li, 2009). The values of “nfactors”  and “model_order”  might have been 

somewhat more important if the data were clustered, as in some of the later examples. 

However, “raw_main”  and “sigma_y”  have important effects on power in any case.  

7.2 Specifying the Effect Size 

 There are several ways to express effect size for a main effect. All of the following four 

calculations give the same answer, 0.7354. “raw_main” represents ���, “raw_coef” represents ��, “d_main” represents ���/� and “std_coef” represents ��/�.  

%FactorialPowerPlan(raw_main= 3,  
          sigma_y= 10, 
          nfactors= 5, 
          model_order= 2, 
          ntotal= 300);  

 
%FactorialPowerPlan(d_main= .3,  

          nfactors= 5, 
          model_order= 2, 
          ntotal= 300);  

 
%FactorialPowerPlan(raw_coef= 1.5,  

          sigma_y= 10, 
          nfactors= 5, 
          model_order= 2, 
          ntotal= 300);  

 
%FactorialPowerPlan(std_coef= .15,  

          nfactors= 5, 
          model_order= 2, 
          ntotal= 300);  

7.3 Including a Pretest 

 It is easy to change the power calculation to assume a pretest is present. Suppose that 

the pretest-posttest correlation is expected to be .6. Code could be written as 
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%FactorialPowerPlan(assignment=independent, 

          model_order= 2, 
          nfactors= 5, 
          ntotal= 300, 
          pre_post_corr= .6, 

          pretest=covariate, 
          raw_main= 3,  
          sigma_y= 10);  

 

or alternatively as 

%FactorialPowerPlan(assignment=independent, 

          model_order= 2, 
          nfactors= 5, 
          ntotal= 300, 
          pre_post_corr= .6, 

          pretest=repeated, 
          raw_main= 3,  
          sigma_y= 10);  

 

  The calculated power for the covariate  approach is 0.8991, and the calculated power 

for the “repeated” approach is 0.8251 (output omitted here to save space). As mentioned 

above, it is controversial whether to conclude from this that (1) the “covariate” approach is 

better, (2) both methods have essentially the same meaning but the power formula for the 

“covariate” approach is too optimistic, or (3) the methods really are conceptually different and 

the investigator needs to decide which one to use. However, it is clear that either way, some 

power is gained relative to the no-pretest model, which offered a power of 0.7354. 
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8. Calculating Sample Size Without Clustering 

Instead of calculating power for a given sample size, one might be interested in sample 

size for a given power. For example, running the code 

%FactorialPowerPlan(std_coef= .15,  
          nfactors= 5, 
          model_order= 2, 

      power= .8); 

• “std_coef” is the standardized effect-coded regression coefficient measure of effect size 

• “model order” denotes the order of the highest order term to be included in the 

regression 

• “nfactors” denotes the number of factors in the experiment 

• “power” denotes the expected power of the experiment 

 

provides the output 

--------------------------------------------------- --------- 
FactorialPowerPlan Macro 
The Methodology Center 
(c) 2012 Pennsylvania State University 
--------------------------------------------------- --------- 
Assumptions: 
There are  5 dichotomous factors. 
There is independent random assignment. 
Analysis will be based on main effects and 2-way in teractions. 

Desired power:   0.80 
Two-sided alpha:   0.05 
Effect size as standardized regression coefficient:    0.15 
Attempting to calculate the estimated required samp le size. 
--------------------------------------------------- --------- 
Results: 
The calculated sample size is   351 
--------------------------------------------------- ---------  

Internally, %FactorialPowerPlan implements this calculation by using the power formula 

iteratively. It successively tries a number of sample sizes, calculates power from each, and 

compares the expected and target power for each sample size. The proposed sample size is 

increased or decreased based on whether the expected power is below or above the target. This 

is a binary search and allows the macro to quickly find the exact sample size that corresponds 

most closely to the target power.  
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8.1 Specifying Effect Size 

As before, effect size can be specified in multiple ways. Any of the following will give the 

same answer of 351 subjects. 

%FactorialPowerPlan(raw_main= 3,  

          sigma_y= 10, 
          nfactors= 5, 
          model_order= 2, 

          power= .8);  

 
%FactorialPowerPlan(raw_coef= 1.5,  
          sigma_y= 10, 
          nfactors= 5, 
          model_order= 2, 
          power= .8);  

 
%FactorialPowerPlan(d_main= .3,  

          nfactors= 5, 
          model_order= 2, 
          power= .8);  

 
%FactorialPowerPlan(std_coef= .15,  

          nfactors= 5, 
          model_order= 2, 
          power= .8);  

 
%FactorialPowerPlan(effect_size_ratio= .0225,  

          nfactors= 5, 
          model_order= 2, 
          power= .8);  

  
  

8.2 Including a Pretest 

 It is reasonable to suppose that the needed sample size could be reduced by adding a 

pretest. To see how much, the code could be written as 
 

%FactorialPowerPlan(std_coef= .15,  
          nfactors= 5, 
          model_order= 2, 
          power= .8, 

      pre_post_corr= .6, 

       pretest=covariate);  

or as 
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%FactorialPowerPlan(std_coef= .15,  
          model_order= 2, 
          nfactors= 5, 
          power= .8, 

      pre_post_corr= .6, 

      pretest=repeated); 

 

The calculated sample size is 226 in the first case or 282 in the second. This is less than the 351 

that was required without a pretest.  

As previously mentioned, it is controversial whether to conclude from this that (1) the 

“covariate” approach is better, (2) both methods have essentially the same meaning but the 

power formula for the “covariate” approach is too optimistic, or (3) the methods really are 

conceptually different and the investigator needs to decide which one to use. However, it is 

clear that either way, some power is gained relative to the no-pretest model. 

 

8.3 A Possible Complication: Avoiding Non-Integer Cell Sizes 

 A slight complication can sometimes occur in calculating power for factorial 

experiments. Specifically, when the hypothesized effect size is very large, the sample size 

corresponding to the desired per-factor power is less than the number of cells in the complete 

factorial. For example, consider an 8-factor study with a hypothesized standardized effect size 

of 1. Running the code 

%FactorialPowerPlan(d_main= 1,  

          nfactors= 8, 
          model_order= 3, 
          power= .8);  

 

• “d_main” is the standardized mean difference measure of effect size 

• “model order” denotes the order of the highest order term to be included in the 

regression 

• “nfactors” denotes the number of factors in the experiment 

• “power” denotes the expected power of the experiment 

 

produces the following output 

Attempting to calculate the estimated required samp le size. 
The calculated sample size is    96 
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However, a complete factorial requires    256 subje cts. 

 

This is because a t-test comparing two conditions of size 48 each would have enough power. 

However, a complete factorial with 8 factors cannot have fewer than 256 subjects, because it 

has 256 conditions (cells) that must be non-empty. Therefore, in this situation the investigator 

has a choice of either (1) using the larger sample size and having more power than was 

considered necessary, or (2) using the smaller sample size, which requires using a fractional 

factorial instead of a complete factorial. Because 96/256 is less than ½ but greater than ¼, a 28-2 

quarter-factorial would be needed if only 96 subjects were to be used (see Collins, Dziak and 

Li, 2009). In that case, the 96-64=32  “extra” subjects should be distributed as evenly as possible 

among the 64 cells, so that each cell gets either 1 or 2 subjects. However, it would be more 

desirable to have multiple participants per cell in case of dropout. In any case, with only one 

or a few participants per cell, direct pairwise comparisons between cells are not feasible, 

and inferences would have to focus on main effects and two- or three- way interactions. 
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9. Calculating Detectable Effect Size Without Clustering 

 Sometimes the number of subjects one can afford is fixed, and the desired target power 

is known, and all that remains is to calculate the smallest detectable effect size in order to 

decide whether the experiment is worth doing. %FactorialPowerPlan can handle this scenario. 

For example, the code 
 

%FactorialPowerPlan(nfactors = 5, 

          model_order = 2, 
          power = .8, 
          ntotal = 300, 
          sigma_y = 10);  

• “nfactors” denotes the number of factors in the experiment 

•  “model order” denotes the order of the highest order term to be included in the 

regression 

•  “power” denotes the expected power of the experiment 

• “ntotal” denotes the total sample size available (unclustered) 

• “sigma_y” denotes the standard deviation of y within each treatment condition) 

 

produces the following output. 
 
--------------------------------------------------- --------- 
FactorialPowerPlan Macro 
The Methodology Center 
(c) 2012 Pennsylvania State University 
--------------------------------------------------- --------- 
Assumptions: 
There are  5 dichotomous factors. 
There is independent random assignment. 
Analysis will be based on main effects and 2-way in teractions. 
Desired power:   0.80 
Two-sided alpha:   0.05 
Total number of participants:   300 
Assumed standard deviation for the response variabl e is   10.00 
Attempting to calculate the estimated detectable ef fect size. 
--------------------------------------------------- --------- 
Results: 
The detectable effect size is estimated as follows:  
 As an unstandardized regression coefficient for ei ther 
 a main effect or an interaction:              1.62 30 
 As an unstandardized mean difference for a main ef fect:  3.2459 
 As an unstandardized difference in differences for  
 a 2-way interaction:                    6.4919 
 As a standardized regression coefficient for eithe r 
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 a main effect or an interaction:              0.16 23 
 As a standardized mean difference (Cohen d) for a 
 main effect:                        0.3246 
 As a standardized difference in differences for 

 a 2-way interaction:                    0.6492 
 As a standardized effect size ratio (Cohen f squar ed) 
 for a main effect or interaction:             0.02 63 
--------------------------------------------------- --------- 
 

  The seven answers given are not actually different, but are the same effect size 

expressed in different ways. They represent �, �� = 2�, 4	�, �/� , 2�/� , 4�/� , and ��/� �.  

9.1 Including a Pretest 

As before, a pretest makes the situation somewhat better. One could use the code 

 
%FactorialPowerPlan(nfactors = 5, 
          model_order = 2, 
          power = .8, 
          ntotal = 300, 
          sigma_y = 10, 

      pre_post_corr= .6, 

      pretest=covariate);  

or  
%FactorialPowerPlan(nfactors = 5, 

           model_order = 2, 

           power = .8, 
        ntotal = 300, 
            sigma_y = 10, 
   pre_post_corr= .6, 

   pretest=repeated);   

The detectable effect size (expressed as standardized difference relative to � ) goes down from 

0.32 to 0.26 or 0.29. In general, a lower detectable effect size is desirable because it means that 

treatment effects do not have to be as large in order to get a statistically significant result. 

As previously mentioned, it is controversial whether to conclude from this that (1) the 

“covariate” approach is better, (2) both methods have essentially the same meaning but the 

power formula for the “covariate” approach is too optimistic, or (3) the methods really are 

conceptually different and the investigator needs to decide which one to use. However, it is 

clear that either way, some power is gained relative to the no-pretest model. 
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10. Calculating Power With Clustering 

 When subjects are nested into clusters, power calculations are different depending on 

whether assignment is at the individual subject level (within clusters) or the cluster level 

(between clusters). 

10.1 Example: Within Clusters 

Within-clusters assignment is available by specifying “assignment=within.” The 

following code: 

%FactorialPowerPlan(raw_main= 3,  
          sigma_y= 10, 
          nfactors= 5, 
          model_order= 2, 

     assignment=within, 
     cluster_size= 10, 
     icc= .1, 
          nclusters= 30);  

• “raw_main” denotes the unstandardized mean difference (effect-size measure) 

• “sigma_y” denotes the standard deviation of y within each treatment condition 

• “nfactors” denotes the number of factors in the experiment 

•  “model order” denotes the order of the highest order term to be included in the 

regression 

• “assignment” indicates the within-cluster assignment of treatment 

• “cluster_size”denotes mean number of members in each cluster 

•  “icc” denotes intraclass correlation of variable of interest when not treated 

• “nclusters” denotes the total number of clusters available 

 

will produce the output 

--------------------------------------------------- --------- 
FactorialPowerPlan Macro 
The Methodology Center 
(c) 2012 Pennsylvania State University 
--------------------------------------------------- --------- 
Assumptions: 
There are  5 dichotomous factors. 
There is random assignment of individuals for each cluster (within-clusters 
effects). 
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Analysis will be based on main effects and 2-way in teractions. 
Two-sided alpha:   0.05 
Cluster size:  10.00 
Number of clusters:   30 

Effect size as unstandardized difference in means:   3.00 
Intraclass correlation of response variable:   0.10  
Assumed standard deviation for the response variabl e is   10.00 
Attempting to calculate the estimated power. 
--------------------------------------------------- --------- 
Results: 
The calculated power is  0.7354 
--------------------------------------------------- --------- 

Notice that because of the within-clusters assignment and our assumption of no treatment-by-

cluster interactions, the calculated power for 30 clusters of 10 members is the same as the 

calculated power for 300 individuals found earlier. The assumed additive random cluster 

effects simply cancel out when comparing factor means. 

10.2  Including a Pretest 

Just as before, you can also include a pretest.  

 
%FactorialPowerPlan(raw_main= 3,  
          sigma_y= 10, 
          nfactors= 5, 
          model_order= 2, 

     assignment=within, 
     cluster_size= 10, 
     icc= .1, 
     pre_post_corr= .6, 

      pretest=covariate, 
          nclusters= 30);  

 
%FactorialPowerPlan(raw_main= 3,  

          sigma_y= 10, 
          nfactors= 5, 
          model_order= 2, 

     assignment=within, 
     cluster_size= 10, 
      icc= .1, 

     pre_post_corr= .6, 

     pretest=repeated, 
          nclusters= 30);  
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Adding a pretest with pre_post_corr= .6 gives a calculated power of 0.8991 or 0.8625 for 

pretest as covariate or repeated measure, respectively. The former is the same as the equivalent 

model in the unclustered case, and the latter is actually a little higher. The counter-intuitive, 

slightly higher power when clustering is technically accurate but conceptually misleading, 

because in general, independent random assignment provides the most statistical information. 

The reason for this apparent paradox is that the total variance � � is assumed to be the same, 

but now there is a cluster-level variance, so that the assumed individual-level variance 

becomes lower in order to add up to the same number (Dziak et al., 2012). This shows that it 

can be important to think carefully about assumptions. 

 

10.3 Example: Between Clusters 

When assignment is between clusters, then power calculations must consider not only 

the response variable intraclass correlation (ICC) and the mean cluster size, but also the 

change-score ICC (if there is a pretest) and the standard deviation of the cluster sizes. The code 

%FactorialPowerPlan(raw_main= 3,  
          sigma_y= 10, 
          nfactors= 5, 
          model_order= 2, 

     assignment=between, 
     cluster_size= 10, 
     cluster_size_sd= 2, 
     icc= .1, 
          change_score_icc= .05,  
          nclusters= 30);  

• “raw_main” denotes the unstandardized mean difference (effect-size measure) 

• “sigma_y” denotes the standard deviation of y within each treatment condition 

• “nfactors” denotes the number of factors in the experiment 

•  “model order” denotes the order of the highest order term to be included in the 

regression 

• “assignment” indicates between-clusters assignment of treatment 

• “cluster_size”denotes mean number of members in each cluster 

• “cluster_size_sd” denotes standard deviation of the number of members in each 

cluster 

• “icc” denotes intraclass correlation of variable of interest when not treated 

• “changescore” denotes the posttest minus the pretest 
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•  “nclusters” denotes the total number of clusters available 

 

will produce the output 

FactorialPowerPlan Macro 

The Methodology Center 
(c) 2012 Pennsylvania State University 
--------------------------------------------------- --------- 
Assumptions: 

There are  5 dichotomous factors. 
There is random assignment of clusters (between-clu sters effects). 
Analysis will be based on main effects and 2-way in teractions. 
Two-sided alpha:   0.05 
Cluster size:  10.00 
Cluster size standard deviation:   2.00 
Number of clusters:   30 
Effect size as unstandardized difference in means:   3.00 
Intraclass correlation of response variable:   0.10  

Intraclass correlation of change scores:   0.05 
Assumed standard deviation for the response variabl e is   10.00 
Attempting to calculate the estimated power. 
--------------------------------------------------- --------- 
Results: 
The calculated power is:  0.4121 
However, a complete factorial requires  32 clusters . 
--------------------------------------------------- --------- 

 

 Notice that the same number of clusters now leads to a power of .4121 for the between-

clusters experiment instead of .7354 for a within-clusters experiment. However, sometimes 

between-clusters assignment is necessary and so a sufficiently large number of clusters must 

somehow be obtained.  

Adding a pretest to the between-clusters scenario as follows: 

  
%FactorialPowerPlan(raw_main=3,  
          sigma_y=10, 
          nfactors=5, 
          model_order=2, 
     assignment=between, 
        cluster_size=10, 
     cluster_size_sd=2, 
     icc=.1, 
          change_score_icc=.05,  
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     pre_post_corr=.6, 
      pretest=repeated, 

    nclusters=30);  

produces the slightly better (but still too low) estimated power of 0.6295. For between-clusters 

assignment, the pretest-as-covariate option is not allowed because power is difficult to predict 

in this setting (Murray, 1998; Dziak et al., 2012). 
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11. Calculating Sample Size With Clustering 

 When discussing sample size in the context of clustered data, the size and the number 

of the clusters must both be considered. For example, if there are 20 clusters each of size 10, 

then there are 20×10=200 total participants. In the kinds of experiments considered in this 

users’ guide, the size of the clusters is not entirely under the investigator's control. For 

instance, the clusters may represent classrooms, schools, clinics, hospitals, or corporations, and 

their characteristic size is known before the study begins. The investigator then has to decide 

how many of these clusters need to be included. Therefore, the %FactorialPowerPlan macro 

requires that cluster size (average number of members per cluster) be input by the user and will 

then calculate the number of clusters required. The total number of participants, of course, can 

then easily be obtained as the product of these numbers. As mentioned earlier, all else being 

equal, between-clusters experiments require more clusters than within-clusters experiments. 

The macro also requires slightly more information for between-clusters experiments than for 

within-clusters experiments: the change score ICC (if there is a pretest) and the standard 

deviation in cluster sizes are required.  

11.1 Example: Within Clusters 

The following code: 

%FactorialPowerPlan(raw_main= 3,  
          sigma_y= 10, 
          nfactors= 5, 
          model_order= 2, 

       assignment=within, 
     cluster_size= 10, 
     icc= .1,  
          power= .80); 

 

• “raw_main” denotes the unstandardized mean difference (effect-size measure) 

• “sigma_y” denotes the standard deviation of y within each treatment condition 

• “nfactors” denotes the number of factors in the experiment 

• “model order” denotes the order of the highest order term to be included in the 

regression 

• “assignment” indicates within-cluster assignment of treatment 

• “cluster_size”denotes mean number of members in each cluster 

• “icc” denotes intraclass correlation of variable of interest when not treated 

• “power” denotes the expected power of the experiment 
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will produce the output 

 

--------------------------------------------------- --------- 
FactorialPowerPlan Macro 
The Methodology Center 

(c) 2012 Pennsylvania State University 
--------------------------------------------------- --------- 
Assumptions: 
There are  5 dichotomous factors. 
There is random assignment of individuals for each cluster (within-clusters 
effects). 
Analysis will be based on main effects and 2-way in teractions. 
Desired power:   0.80 
Two-sided alpha:   0.05 

Cluster size:  10.00 
Effect size as unstandardized difference in means:   3.00 
Intraclass correlation of response variable:   0.10  
Assumed standard deviation for the response variabl e is   10.00 
Attempting to calculate the estimated required samp le size. 
--------------------------------------------------- --------- 
Results: 
The calculated sample size is    36 clusters. 
--------------------------------------------------- ---------  

Thus, 36 clusters (or 360 total participants) are recommended.  

Including a Pretest 

Somewhat fewer clusters are needed if there is a pretest. The code 

%FactorialPowerPlan(raw_main= 3,  
          sigma_y= 10, 

          nfactors= 5, 
          model_order= 2, 

       assignment=within, 
     cluster_size= 10, 
       icc= .1, 
     pre_post_corr= .6, 

     pretest=repeated, 
    power= .80); 

now produces a recommendation for only 26 clusters, not 36 clusters. When the pretest is 

included as a covariate 

%FactorialPowerPlan(raw_main= 3,  
          sigma_y= 10, 
          nfactors= 5, 
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          model_order= 2, 

       assignment=within, 
     cluster_size= 10, 
     icc= .1, 
     pre_post_corr= .6, 

     pretest=covariate,  
          power= .80); 

then 23 clusters are recommended.  

As previously mentioned, it is controversial whether to conclude from this that (1) the 

“covariate” approach is better, (2) both methods have essentially the same meaning but the 

power formula for the “covariate” approach is too optimistic, or (3) the methods really are 

conceptually different and the investigator needs to decide which one to use. However, it is 

clear that either way, some power is gained relative to the no-pretest model. 

 

11.3 Example: Between Clusters 

All else being equal, between-clusters experiments require more clusters than within-

clusters experiments. The macro also requires slightly more information for between-clusters 

experiments than for within-clusters experiments: the change score ICC (if there is a pretest) 

and the standard deviation in cluster sizes are required.  

The code 

%FactorialPowerPlan(raw_main= 3,  

          sigma_y= 10, 

          nfactors= 5, 
          model_order= 2, 

          assignment=between, 
          cluster_size= 10, 
          cluster_size_sd= 2, 
          icc= .1, 
          power= .80 ); 

produces the output 

 
--------------------------------------------------- --------- 
FactorialPowerPlan Macro 
The Methodology Center 
(c) 2012 Pennsylvania State University 
--------------------------------------------------- --------- 
Assumptions: 
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There are  5 dichotomous factors. 
There is random assignment of clusters (between-clu sters effects). 
Analysis will be based on main effects and 2-way in teractions. 
Desired power:   0.80 

Two-sided alpha:   0.05 
Cluster size:  10.00 
Cluster size standard deviation:   2.00 
Effect size as unstandardized difference in means:   3.00 
Intraclass correlation of response variable:   0.10  
Intraclass correlation of change scores:   0.05 
Assumed standard deviation for the response variabl e is   10.00 
Attempting to calculate the estimated required samp le size. 
--------------------------------------------------- --------- 
Results: 
The calculated sample size is    71 clusters. 
--------------------------------------------------- ---------  

Including a Pretest 

Fully 71 clusters of average size 10 are required. Fortunately, a pretest reduces this 

somewhat. The code 

%FactorialPowerPlan(raw_main= 3,  

          sigma_y= 10, 
          nfactors= 5, 
          model_order= 2, 

       assignment=between, 
     cluster_size= 10, 

    cluster_size_sd= 2, 
     icc= .1, 
          change_score_icc= .05,  
     pre_post_corr= .6, 

     pretest=repeated, 
          power= .80 );  

produces a recommendation of only 42 clusters of average size 10. For between-clusters 

assignment, the pretest-as-covariate option is not allowed because power is difficult to predict 

in this setting (Murray, 1998; Dziak et al., 2012). 
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12. Calculating Detectable Effect Size with Clustering 

 Finally, one can also calculate detectable effect size under clustering.  

12.1 Example: Within Clusters 

 The following code 

%FactorialPowerPlan(sigma_y= 10, 

          nfactors= 5, 
          model_order= 2, 

       assignment=within, 
     cluster_size= 10, 

     icc= .1,  
          power= .80, 
          nclusters= 50); 
 

•  “sigma_y” denotes the standard deviation of y within each treatment condition 

• “nfactors” denotes the number of factors in the experiment 

•  “model order” denotes the order of the highest order term to be included in the 

regression 

• “assignment” indicates within-cluster assignment of treatment 

• “cluster_size”denotes mean number of members in each cluster 

•  “icc” denotes intraclass correlation of variable of interest when not treated 

• “power” denotes the expected power of the experiment 

• “nclusters” denotes the total number of clusters available 

 

will produce the output 

--------------------------------------------------- --------- 
FactorialPowerPlan Macro 
The Methodology Center 

(c) 2012 Pennsylvania State University 
--------------------------------------------------- --------- 
Assumptions: 
There are  5 dichotomous factors. 
There is random assignment of individuals for each cluster (within-clusters 
effects). 
Analysis will be based on main effects and 2-way in teractions. 
Desired power:   0.80 
Two-sided alpha:   0.05 
Cluster size:  10.00 
Number of clusters:   50 
Intraclass correlation of response variable:   0.10  
Assumed standard deviation for the response variabl e is   10.00 
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Attempting to calculate the estimated detectable ef fect size. 
--------------------------------------------------- --------- 
Results: 
The detectable effect size is estimated as follows:  

 As an unstandardized regression coefficient for ei ther 
 a main effect or an interaction:              1.25 54 
 As an unstandardized mean difference for a main ef fect:  2.5108 
 As an unstandardized difference in differences for  
 a 2-way interaction:                    5.0217 
 As a standardized regression coefficient for eithe r 
 a main effect or an interaction:              0.12 55 
 As a standardized mean difference (Cohen d) for a 
 main effect:                        0.2511 
 As a standardized difference in differences for 
 a 2-way interaction:                    0.5022 
 As a standardized effect size ratio (Cohen f squar ed) 
 for a main effect or interaction:             0.01 58 
--------------------------------------------------- --------- 

  

 If a pretest is used, it may become feasible to detect smaller effects. Here, the pretest is 

included as a repeated measure. 
 
%FactorialPowerPlan(sigma_y= 10, 

          nfactors= 5, 
          model_order= 2, 

       assignment=within, 
     cluster_size= 10,  
     pre_post_corr= .6, 

     pretest=repeated, 
     icc= .1,  
          power= .80, 
          nclusters= 50); 

The output is 

--------------------------------------------------- --------- 
Results: 
The detectable effect size is estimated as follows:  
 As an unstandardized regression coefficient for ei ther 
 a main effect or an interaction:              1.06 53 
 As an unstandardized mean difference for a main ef fect:  2.1305 
 As an unstandardized difference in differences for  
 a 2-way interaction:                    4.2610 
 As a standardized regression coefficient for eithe r 
 a main effect or an interaction:              0.10 65 
 As a standardized mean difference (Cohen d) for a 
 main effect:                        0.2131 
 As a standardized difference in differences for 
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 a 2-way interaction:                    0.4261 
 As a standardized effect size ratio (Cohen f squar ed) 
 for a main effect or interaction:             0.01 13 
--------------------------------------------------- --------- 

Including a Pretest 

 The detectable effect size, as a standardized difference d relative to � , goes from .25 

down to .21. If we include the pretest as a covariate, 

%FactorialPowerPlan(sigma_y= 10, 
          nfactors= 5, 
          model_order= 2, 

       assignment=within, 
     cluster_size= 10,  
     pre_post_corr= .6, 

     pretest=covariate, 
     icc= .1,  
          power= .80, 
          nclusters= 50); 

the output is 

--------------------------------------------------- ---------                   
Results:                                             
The detectable effect size is estimated as follows:                         
 As an unstandardized regression coefficient for ei ther                     
 a main effect or an interaction:              1.00 43                
 As an unstandardized mean difference for a main ef fect:  2.0086                
 As an unstandardized difference in differences for                        
 a 2-way interaction:                    4.0173                
 As a standardized regression coefficient for eithe r                       
 a main effect or an interaction:              0.10 04                
 As a standardized mean difference (Cohen d) for a                        
 main effect:                        0.2009                
 As a standardized difference in differences for                         
 a 2-way interaction:                    0.4017                
 As a standardized effect size ratio (Cohen f squar ed)                      
 for a main effect or interaction:             0.01 01                
--------------------------------------------------- ---------    
 

 The detectable effect size, as a standardized difference d relative to � , goes from .25 

down to .20 (compared to .21 when the test is included as a repeated measure).  

As previously mentioned, it is controversial whether to conclude from this that (1) the 

“covariate” approach is better, (2) both methods have essentially the same meaning but the 

power formula for the “covariate” approach is too optimistic, or (3) the methods really are 
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conceptually different and the investigator needs to decide which one to use. However, it is 

clear that either way, some power is gained relative to the no-pretest model. 

 

12.2 Example: Between Clusters 

 The code 

%FactorialPowerPlan(sigma_y= 10, 

          nfactors= 5, 
          model_order= 2, 

          assignment=between, 
          cluster_size= 10, 
          cluster_size_sd= 2, 
          icc= .1,  
          change_score_icc= .05, 
          power= .80, 
          nclusters= 50);  

• “sigma_y” denotes the standard deviation of y within each treatment condition 

• “nfactors” denotes the number of factors in the experiment 

•  “model order” denotes the order of the highest order term to be included in the 

regression 

• “assignment” indicates within-cluster assignment of treatment 

• “cluster_size”denotes mean number of members in each cluster 

• “cluster_size_sd” denotes standard deviation of the number of members in each 

cluster 

• “icc” denotes intraclass correlation of variable of interest when not treated 

• “changescore” denotes the posttest minus the pretest 

•  “power” denotes the expected power of the experiment 

• “nclusters” denotes the total number of clusters available 

 

produces the output 

--------------------------------------------------- --------- 
Results: 
The detectable effect size is estimated as follows:  
 As an unstandardized regression coefficient for ei ther 
 a main effect or an interaction:              1.79 63 
 As an unstandardized mean difference for a main ef fect:  3.5927 
 As an unstandardized difference in differences for  



40 

 

 

 a 2-way interaction:                    7.1854 
 As a standardized regression coefficient for eithe r 
 a main effect or an interaction:              0.17 96 
 As a standardized mean difference (Cohen d) for a 

 main effect:                        0.3593 
 As a standardized difference in differences for 
 a 2-way interaction:                    0.7185 
 As a standardized effect size ratio (Cohen f squar ed) 
 for a main effect or interaction:             0.03 23 
 

 As expected, the detectable effect size is larger now than it was in the within-clusters 

case; that is, the experiment is less sensitive to small but possibly meaningful effects. However, 

a pretest may help somewhat. For between-clusters assignment, the pretest-as-covariate option 

is not allowed because power is difficult to predict in this setting (Murray, 1998; Dziak et al., 

2012). To incorporate the pretest as a repeated measure, the following code 
 
%FactorialPowerPlan(sigma_y= 10, 
          nfactors= 5, 
          model_order= 2, 

          assignment=between, 
          cluster_size= 10, 
          cluster_size_sd= 2, 
          pre_post_corr= .6, 

          pretest=repeated, 
          icc= .1,  
          change_score_icc= .05, 
          power= .80, 
          nclusters= 50);  

 

produces the output 
--------------------------------------------------- --------- 
Results: 
The detectable effect size is estimated as follows:  
 As an unstandardized regression coefficient for ei ther 
 a main effect or an interaction:              1.36 13 
 As an unstandardized mean difference for a main ef fect:  2.7225 
 As an unstandardized difference in differences for  
 a 2-way interaction:                    5.4451 
 As a standardized regression coefficient for eithe r 

 a main effect or an interaction:              0.13 61 
 As a standardized mean difference (Cohen d) for a 
 main effect:                        0.2723 
 As a standardized difference in differences for 
 a 2-way interaction:                    0.5445 
 As a standardized effect size ratio (Cohen f squar ed) 
 for a main effect or interaction:             0.01 85 
--------------------------------------------------- --------- 
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The detectable effect size, as a standardized difference relative to � , goes from .35 down to 

.27.  
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14. Appendix: Models and Formulas 

 This section describes the formulas used by the %FactorialPowerPlan macro in the 

different scenarios described in the main body of the users' guide.  

No Clustering and No Pretest 

 We assume the regression model 

��E = �� + ∑����� + G�, 
where G� are random normal errors with variance �H�. (Interactions between the factors may be 

in the model also, but for simplicity they are not shown in the expression above, as we are 

mainly interested here in the sampling distribution of any given regression coefficient 

estimate.) The variance � �	of �� after adjusting for the treatment is equivalent to �H�. The 

noncentrality parameter for calculating power for the effect represented by a given coefficient � (specifically, the hypothesis that this � = 0 for this effect) is  

J = KLMNOM = KLMNPM , 

where / is the total sample size. This is expression (4.3) in Spybrook et al. (2011), rescaled by 4 

because they are using + �� , − �� coding and we are using +1,−1 coding. Arguably, following 

Cohen (1988), it may be more conservative to use J = �/ − %���/�error
�  where % is the number 

of regression coefficients in the model. This is based on the distinction between the 

denominators in the maximum likelihood (Q) and unbiased (Q − %) formulas. However, there 

is not a clear right answer; it should not matter much for practical sample sizes.  

No Clustering, Pretest as Covariate 

 If there is a pretest entered as a covariate, then we assume 

R� = �S + R�∗�� − �SR� = �� + ∑����� + G�E  , 
where R� is the pretest, �� is the posttest, and R�∗~/�0, �S�� and G�~/�0, �H�� are independent 

random errors. The overall (marginal) variance of �� , adjusting for the treatment but not 

adjusting for the pretest, is denoted � � = �S��S� + �H�. It also turns out that �H� = )1 −Upre,post
� *� �, where Upre,post is the correlation between the pretest and posttest. 
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 The noncentrality parameter for testing whether a particular regression coefficient � 

equals zero is  

J = KLMNOM = KLM4��Vpre,post
M 5NPM . 

This is (4.11) in Spybrook et al. (2011), rescaled as discussed above. A very technical point is 

that, if the pretest is a latent variable measured with error, and Upre,post is misinterpreted as the 

correlation between the latent pretest and the posttest, then the power estimate based on the 

second formula may be overly optimistic (see Oakes & Feldman, 2001). Therefore, it is better to 

instead use the correlation of the observed pretest and the observed posttest; this will be the 

correlation of the latent and observed pretests times the correlation of the latent pretest and 

posttest. 

No Clustering, Pretest as Repeated Measure 

 If a pretest is entered as a repeated measure, then we assume  

R� = �S + W� + G���� − R� = �� + ∑����� + �G�� − G��� , 
where W�E~/�0, �X�� , G��E~/�0, �H�� and G��E~/�0, �H��. That is, the repeated measures model 

works like a regression model on gain scores (Anderson et al., 1980). The overall pretest 

variance is denoted � � = �X� + �H�, and the pretest-posttest correlation is Upre,post = �X�/� �. The 

noncentrality parameter is  

J = KLM�NOM = KLM�)��Vpre,post*NPM  . 
Note that in this expression, Upre,post is not squared. 

Clustering and No Pretest  

For individual  in cluster Y, we assume the regression model 

��E = �� + ∑�����E + ZE + G�E , 
where ZE~/�0, [\�) independently for each cluster and G�E~/�0, �H�) independently for each 

individual.  

Within-clusters assignment. If assignment is within-clusters then the noncentrality 

parameter is  
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J = KLM�NPM  , 

where � � = [\� + �H� is the overall variance. This is (5.4) in Spybrook et al. (2011), rescaled, with 

treatment-by-cluster variance assumed to be negligible. This assumption may not be 

appropriate, but more research is needed regarding how to deal with this issue in a multiple-

factor situation. Spybrook et al. (2011) were following Raudenbush and Liu (2000), who were 

considering the single-factor case. 

Between-clusters assignment. If assignment is between-clusters then the noncentrality 

parameter is  

J = /��� �)1 � �Q] 	 1�U *
 

(Murray 1998, Dziak et al., 2012). Here / is the total number of participants and Q] is an 

adjusted measure of the size of each cluster. If every cluster has the same number Q of 

members, then Q] � Q. Otherwise, Dziak et al. (2012) suggested Q] � ��^_̀ �� � 1�Q based on 

Eldridge, Ashby, and Kerry (2006), where ^_̀  is the expected standard deviation of cluster size 

divided by the expected mean of cluster size. Last, � � � [\� � �H� is the overall variance, and U  

is the intraclass correlation of the clusters (at pretest, or at posttest after adjusting for 

treatment).  This assumes treatment-by-cluster variance is negligible. 

Clustering and a Pretest as Covariate 

Within-clusters assignment. If assignment is within-clusters and the pretest is a 

covariate, then Dziak et al. (2012,) recommend estimating the noncentrality parameter as  

J � KLM
4��Vpre,post

M 5NPM
 , 

where Upre,post
�  is calculated ignoring clusters rather than within clusters. As before, this 

formula ignores the possibility of random cluster-by-treatment interaction, so the formulas of 

Raudenbush and Liu (2000), although more complicated, are likely more realistic.  

Clustering and a Pretest as Repeated Measure 

 For a repeated measures clustering design, we assume model (8) or (9) in Dziak et al. 

(2012) for within-clusters and between-clusters factors respectively. Either model implies that 

the posttest minus pretest difference or “change score” is 
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a��E 	 a��E � b��� � ZE � ∑�����E � ZE � G�E , 

for the ith individual in the jth cluster. (The above expression is a somewhat simpler way to 

write the model than the multilevel notation in Dziak et al.; here we write ZE in place of Z��E, 
and �� in place of b��� or b���.) We also assume that in the absence of treatment effects, the 

overall variance � � and intraclass correlation U  would be the same for a��E as for a��E. Finally, 

we denote the intraclass correlation of the change scores as Ucdefgh. 

Within-clusters assignment. If assignment is within-clusters then the noncentrality 

parameter expression from Dziak et al. (2012) is equivalent to 

J � KLM
�NPM)��Vpre,post*)��VP*

  . 

This assumes the treatment-by-cluster variance is negligible. 

Between-clusters assignment. If assignment is within-clusters then the noncentrality 

parameter expression from Dziak et al. (2012) is equivalent to  

J � KLM)��Vijklmn*
�NPM)��Vpre,post*)��VP*)��� ]̀���Vijklmn*

  . 

This assumes the treatment-by-cluster variance is negligible. 


